Application and Thermal-reliability-aware Reinforcement Learning Based Multi-core Power Management

Author:

Dinakarrao Sai Manoj Pudukotai1ORCID,Joseph Arun2,Haridass Anand2,Shafique Muhammad3,Henkel Jörg4,Homayoun Houman5

Affiliation:

1. George Mason University, Fairfax, VA, USA

2. IBM Systems, Bangalore, Karnataka, India

3. Vienna University of Technology (TU Wien), Austria

4. Karlsruhe Institute of Technology, Germany

5. University of California, Davis, USA

Abstract

Power management through dynamic voltage and frequency scaling (DVFS) is one of the most widely adopted techniques. However, it impacts application reliability (due to soft errors, circuit aging, and deadline misses). However, increased power density impacts the thermal reliability of the chip, sometimes leading to permanent failure. To balance both application- and thermal-reliability along with achieving power savings and maintaining performance, we propose application- and thermal-reliability-aware reinforcement learning–based multi-core power management in this work. The proposed power management scheme employs a reinforcement learner to consider the power savings and variations in the application and thermal reliability caused by DVFS. To overcome the computational overhead, the power management decisions are determined at the application-level rather than per-core or system-level granularity. Experimental evaluation of proposed multi-core power management on a microprocessor with up to 32 cores, running PARSEC applications, was done to demonstrate the applicability and efficiency of the proposed technique. Compared to the existing state-of-the-art techniques, the proposed technique enables an average energy savings of up to ∼20%, up to 4.926°C temperature reduction without degradation in the application- and thermal-reliability.

Funder

German Research Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3