A Novel Point Cloud Registration Method for Multimedia Communication in Automated Driving Metaverse

Author:

Yong Binbin1ORCID,Lei Ming1ORCID,Shen Jun2ORCID,Zhi Peng1ORCID,Zhao Rui1ORCID,Zhou Qingguo1ORCID

Affiliation:

1. School of Information Science and Engineering, Lanzhou University, Lanzhou, China

2. University of Wollongong, Wollongong, Australia

Abstract

The development of the Metaverse offers more possibilities for autonomous driving. This is mainly reflected in the fact that the scene reconstructed based on multiple sensors can help the autonomous vehicle establish a Metaverse world based on its own real situation. When multiple vehicles build such a Metaverse world in the same scene, they can exchange their information including the perception of the vehicle’s condition and the surrounding environment, which means the creation of a Metaverse world containing all vehicles. Thus, an indirect Human-Human Multimedia Communications based on the Metaverse is realized, in which the autonomous driving system acts as a multimedia to provide a medium for the exchange of information between vehicles. The establishment of the Metaverse is based on stable and high-quality scene reconstruction. Accurate scene information can bring high quality Human-Human Multimedia Communications. Achieving this requires accurate scene reconstruction and vehicle positioning, both of which depend on accurate point cloud registration. In this work, we propose a robust registration method that is based on semantic information and scaling constraints. Our method consists of three steps. Firstly, we filter out points that might mislead the point cloud registration process by leveraging semantic information. Secondly, we obtain a more accurate initial matrix using TEASER++, which is based on semantic information and feature descriptors. Finally, we use semantic information and scaling to constrain the nearest neighbor matching and filter out error matches to obtain a higher quality registration. By following these steps, our method overcomes the memory problem faced by TEASER++ when there are large-scale point clouds, and greatly reduces its running time. Meanwhile, our algorithm achieved superior point cloud registration results compared to two state-of-the-art robust registration techniques: Globally optimal Iterative Closest Point (Go-ICP) and Generalized Iterative Closest Point (GICP).

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3