Bar Induction is Compatible with Constructive Type Theory

Author:

Rahli Vincent1,Bickford Mark2,Cohen Liron2,Constable Robert L.2

Affiliation:

1. SnT, University of Luxembourg, Luxembourg

2. Cornell University, NY, USA

Abstract

Powerful yet effective induction principles play an important role in computing, being a paramount component of programming languages, automated reasoning, and program verification systems. The Bar Induction (BI) principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of transfinite induction. In this work, we investigate the compatibility of several variants of BI with Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We first show that CTT is compatible with a BI principle for sequences of numbers. Then, we establish the compatibility of CTT with a more general BI principle for sequences of name-free closed terms. The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding BI, such as the non-truncated version of BI on monotone bars being intuitionistically false. These enhancements are carried out formally using the Nuprl proof assistant that implements CTT and the formalization of CTT within the Coq proof assistant presented in previous works.

Funder

Eric and Wendy Schmidt Postdoctoral Award program for Women in Mathematical and Computing Sciences

Fonds National de la Recherche Luxembourg

Weizmann Institute of Science -- National Postdoctoral Award program for Advancing Women in Science

Fulbright Post-doctoral Scholar program

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formally Computing with the Non-computable;Lecture Notes in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3