Diversity-oriented Multimodal and Interactive Information Retrieval

Author:

Calumby Rodrigo Tripodi1

Affiliation:

1. RECOD Lab, University of Campinas, Brazil and University of Feira de Santana, Brazil

Abstract

Information retrieval methods, especially considering multimedia data, have evolved towards the integration of multiple sources of evidence in the analysis of the relevance of the items considering a given user search task. In this context, for attenuating the semantic gap between low-level features extracted from the content of the digital objects and high-level semantic concepts (objects, categories, etc.) and making the systems adaptive to different user needs, interactive models have brought the user closer to the retrieval loop allowing user-system interaction mainly through implicit or explicit relevance feedback. Analogously, diversity promotion has emerged as an alternative for tackling ambiguous or underspecified queries. Additionally, several works have addressed the issue of minimizing the required user effort on providing relevance assessments while keeping an acceptable overall effectiveness This thesis discusses, proposes, and experimentally analyzes multimodal and interactive diversity-oriented information retrieval methods. This work, comprehensively covers the interactive information retrieval literature and also discusses about recent advances, the great research challenges, and promising research opportunities. We have proposed and evaluated two relevancediversity trade-off enhancement work-flows, which integrate multiple information from images, such as: visual features, textual metadata, geographic information, and user credibility descriptors. In turn, as an integration of interactive retrieval and diversity promotion techniques, for maximizing the coverage of multiple query interpretations/aspects and speeding up the information transfer between the user and the system, we have proposed and evaluated a multimodal online learning-to-rank method trained with relevance feedback over diversified results Our experimental analysis shows that the joint usage of multiple information sources positively impacted the relevance-diversity balancing algorithms. Our results also suggest that the integration of multimodal-relevance-based filtering and reranking is effective on improving result relevance and also boosts diversity promotion methods. Beyond it, with a thorough experimental analysis we have investigated several research questions related to the possibility of improving result diversity and keeping or even improving relevance in interactive search sessions. Moreover, we analyze how much the diversification effort affects overall search session results and how different diversification approaches behave for the different data modalities. By analyzing the overall and per feedback iteration effectiveness, we show that introducing diversity may harm initial results whereas it significantly enhances the overall session effectiveness not only considering the relevance and diversity, but also how early the user is exposed to the same amount of relevant items and diversity

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Management Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3