Hybrid Human-Machine Classification System for Cultural Heritage Data

Author:

Shabani Shaban1,Sokhn Maria2,Schuldt Heiko3

Affiliation:

1. University of Basel & University of Applied Sciences Western Switzerland (HES-SO), Basel, Switzerland

2. University of Applied Sciences Western Switzerland (HES-SO), Neuchâtel, Switzerland

3. University of Basel, Basel, Switzerland

Funder

Hasler Stiftung

Publisher

ACM

Reference38 articles.

1. Quality Control in Crowdsourcing Systems: Issues and Directions

2. Abdelhak Belhi Abdelaziz Bouras and Sebti Foufou. 2018. Leveraging known data for missing label prediction in cultural heritage context. App. Sciences (2018). Abdelhak Belhi Abdelaziz Bouras and Sebti Foufou. 2018. Leveraging known data for missing label prediction in cultural heritage context. App. Sciences (2018).

3. Celia Cintas Manuel Lucena José Manuel Fuertes Claudio Delrieux Pablo Navarro Rolando González-José and Manuel Molinos. 2020. Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks. Journal of Cultural Heritage (2020) 106 -- 112. Celia Cintas Manuel Lucena José Manuel Fuertes Claudio Delrieux Pablo Navarro Rolando González-José and Manuel Molinos. 2020. Automatic feature extraction and classification of Iberian ceramics based on deep convolutional networks. Journal of Cultural Heritage (2020) 106 -- 112.

4. ICOMOS International Cultural Tourism Committee et al. 2002. International Cultural Tourism Charter: Principles and Guidelines for Managing Tourism at Places of Cultural and Heritage Significance. 13 June 2013. ICOMOS International Cultural Tourism Committee et al. 2002. International Cultural Tourism Charter: Principles and Guidelines for Managing Tourism at Places of Cultural and Heritage Significance. 13 June 2013.

5. Joe Cox Eun Young Oh Brooke Simmons Gary Graham Anita Greenhill Chris Lintott Karen Masters and James Woodcock. 2015. Doing good online: An investigation into the characteristics and motivations of digital volunteers. Leeds University Business School Working Paper 16-08 (2015). Joe Cox Eun Young Oh Brooke Simmons Gary Graham Anita Greenhill Chris Lintott Karen Masters and James Woodcock. 2015. Doing good online: An investigation into the characteristics and motivations of digital volunteers. Leeds University Business School Working Paper 16-08 (2015).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3