GEMM-based level 3 BLAS

Author:

Kågström Bo1,Ling Per1,van Loan Charles2

Affiliation:

1. Umeå Univ., Umeå, Sweden

2. Cornell Univ., Ithaca, NY

Abstract

The level 3 Basic Linear Algebra Subprograms (BLAS) are designed to perform various matrix multiply and triangular system solving computations. Due to the complex hardware organization of advanced computer architectures the development of optimal level 3 BLAS code is costly and time consuming. However, it is possible to develop a portable and high-performance level 3 BLAS library mainly relying on a highly optimized GEMM, the routine for the general matrix multiply and add operation. With suitable partitioning, all the other level 3 BLAS can be defined in terms of GEMM and a small amount of level 1 and level 2 computations. Our contribution is twofold. First, the model implementations in Fortran 77 of the GEMM-based level 3 BLAS are structured to reduced effectively data traffic in a memory hierarchy. Second, the GEMM-based level 3 BLAS performance evaluation benchmark is a tool for evaluating and comparing different implementations of the level 3 BLAS with the GEMM-based model implementations.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic generation of ARM NEON micro-kernels for matrix multiplication;The Journal of Supercomputing;2024-03-12

2. An automated approach for improving the inference latency and energy efficiency of pretrained CNNs by removing irrelevant pixels with focused convolutions;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

3. An Efficient Platform for Numerical Modeling of Partial Differential Equations;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Accelerating Sparse LU Factorization with Density-Aware Adaptive Matrix Multiplication for Circuit Simulation;2023 60th ACM/IEEE Design Automation Conference (DAC);2023-07-09

5. Efficient Stencil Computation with Temporal Blocking by Halide DSL;2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3