A bottom-up, knowledge-aware approach to integrating and querying web data services

Author:

Quarteroni Silvia1,Brambilla Marco1,Ceri Stefano1

Affiliation:

1. Politecnico di Milano, Italy

Abstract

As a wealth of data services is becoming available on the Web, building and querying Web applications that effectively integrate their content is increasingly important. However, schema integration and ontology matching with the aim of registering data services often requires a knowledge-intensive, tedious, and error-prone manual process. We tackle this issue by presenting a bottom-up, semi-automatic service registration process that refers to an external knowledge base and uses simple text processing techniques in order to minimize and possibly avoid the contribution of domain experts in the annotation of data services. The first by-product of this process is a representation of the domain of data services as an entity-relationship diagram, whose entities are named after concepts of the external knowledge base matching service terminology rather than being manually created to accommodate an application-specific ontology. Second, a three-layer annotation of service semantics (service interfaces, access patterns, service marts) describing how services “play” with such domain elements is also automatically constructed at registration time. When evaluated against heterogeneous existing data services and with a synthetic service dataset constructed using Google Fusion Tables, the approach yields good results in terms of data representation accuracy. We subsequently demonstrate that natural language processing methods can be used to decompose and match simple queries to the data services represented in three layers according to the preceding methodology with satisfactory results. We show how semantic annotations are used at query time to convert the user's request into an executable logical query. Globally, our findings show that the proposed registration method is effective in creating a uniform semantic representation of data services, suitable for building Web applications and answering search queries.

Funder

European Commission

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CrumbTrail: An efficient methodology to reduce multiple inheritance in knowledge graphs;Knowledge-Based Systems;2018-07

2. Towards a UML and IFML Mapping to GraphQL;Current Trends in Web Engineering;2018

3. Automatic semantic enrichment of data services;Proceedings of the 19th International Conference on Information Integration and Web-based Applications & Services;2017-12-04

4. Services Discovery and Recommendation for Multi-datasource Access: Exploiting Semantic and Social Technologies;Studies in Big Data;2017-05-31

5. Extracting Emerging Knowledge from Social Media;Proceedings of the 26th International Conference on World Wide Web;2017-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3