Leveraging Fog Analytics for Context-Aware Sensing in Cooperative Wireless Sensor Networks

Author:

Bhargava Kriti1ORCID,Ivanov Stepan1,McSweeney Diarmuid2,Donnelly William2

Affiliation:

1. Telecommunications Software 8 Systems Group, Waterford Institute of Technology, Waterford, Ireland

2. Waterford Institute of Technology, Waterford, Ireland

Abstract

In this article, we present a fog computing technique for real-time activity recognition and localization on-board wearable Internet of Things(IoT) devices. Our technique makes joint use of two light-weight analytic methods—Iterative Edge Mining(IEM) and Cooperative Activity Sequence-based Map Matching(CASMM). IEM is a decision-tree classifier that uses acceleration data to estimate the activity state. The sequence of activities generated by IEM is analyzed by the CASMM method for identifying the location. The CASMM method uses cooperation between devices to improve accuracy of classification and then performs map matching to identify the location. We evaluate the performance of our approach for activity recognition and localization of animals. The evaluation is performed using real-world acceleration data of cows collected during a pilot study at a Dairygold-sponsored farm in Kilworth, Ireland. The analysis shows that our approach can achieve a localization accuracy of up to 99%. In addition, we exploit the location-awareness of devices and present an event-driven communication approach to transmit data from the IoT devices to the cloud. The delay-tolerant communication facilitates context-aware sensing and significantly improves energy profile of the devices. Furthermore, an array-based implementation of IEM is discussed, and resource assessment is performed to verify its suitability for device-based implementation.

Funder

Science Foundation Ireland

Department of Agriculture, Food and the Marine

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference41 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3