Achieving Tunable Erasure Coding with Cluster-Aware Redundancy Transitioning

Author:

Zhang Feng1ORCID,Nan Fulin2ORCID,Xu Binbin3ORCID,Shen Zhirong1ORCID,Zhai Jiebin1ORCID,Kalplun Dmitrii4ORCID,Shu Jiwu2ORCID

Affiliation:

1. Xiamen University, Xiamen, China

2. Xiamen University, Xiamen China

3. Alibaba Group, Hangzhou, China

4. Saint Petersburg Electrotechnical University "LETI", Saint Petersburg Russia

Abstract

Erasure coding has been demonstrated as a storage-efficient means against failures, yet its tunability remains a challenging issue in data centers, which is prone to induce substantial cross-cluster traffic. In this article, we present ClusterRT , a cluster-aware redundancy transitioning approach that can dynamically tailor the redundancy degree of erasure coding in data centers. ClusterRT formulates the data relocation as the maximum flow problem to reduce cross-cluster data transfers. It then designs a parity-coordinated update algorithm, which gathers the parity chunks within the same cluster and leverages encoding dependency to further decrease the cross-cluster update traffic. ClusterRT finally rotates the parity chunks to balance the cross-cluster transitioning traffic across the data center. Large-scale simulation and Alibaba Cloud ECS experiments show that ClusterRT reduces 94.0% to 96.2% of transitioning traffic and reduces 70.4% to 88.4% of transitioning time.

Funder

National Key R&D Program of China

Major Research Plan of the National Natural Science Foundation of China

Natural Science Foundation of China

Natural Science Foundation of Fujian Province of China

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Ceph. 2016. Erasure Coding in Ceph. Retrieved from https://docs.ceph.com/en/latest/rados/operations/erasure-code/

2. OpenStack. 2019. Erasure Code Support. Retrieved from https://docs.openstack.org/swift/latest/overview_erasure_code.html

3. Apache. 2021. HDFS Erasure Coding. Retrieved from https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

4. Alibaba Cloud. 2023. Alibaba Cloud Elastic Compute Service. Retrieved from https://www.alibabacloud.com/product/ecs

5. Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. 2014. ShuffleWatcher: Shuffle-aware scheduling in multi-tenant MapReduce clusters. In 2014 USENIX Annual Technical Conference (USENIX ATC ’14). 1–13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3