Joins via Geometric Resolutions

Author:

Khamis Mahmoud Abo1ORCID,Ngo Hung Q.1,Ré Christopher2,Rudra Atri3

Affiliation:

1. LogicBlox and University at Buffalo, Berkeley, CA

2. Stanford University, Stanford, CA

3. University at Buffalo, Buffalo, New York

Abstract

We present a simple geometric framework for the relational join. Using this framework, we design an algorithm that achieves the fractional hypertree-width bound, which generalizes classical and recent worst-case algorithmic results on computing joins. In addition, we use our framework and the same algorithm to show a series of what are colloquially known as beyond worst-case results. The framework allows us to prove results for data stored in BTrees, multidimensional data structures, and even multiple indices per table. A key idea in our framework is formalizing the inference one does with an index as a type of geometric resolution, transforming the algorithmic problem of computing joins to a geometric problem. Our notion of geometric resolution can be viewed as a geometric analog of logical resolution. In addition to the geometry and logic connections, our algorithm can also be thought of as backtracking search with memoization.

Funder

DARPA's XDATA Program

American Family Insurance

NSF

NSF CAREER

Toshiba

EarthCube Award

DEFT Program

ONR

Sloan Research Fellowship

DARPA's MEMEX program

Moore Foundation Data Driven Investigator Award

Google

Lightspeed Ventures

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tackling Challenges in Implementing Large-Scale Graph Databases;Communications of the ACM;2024-08

2. Space & Time Efficient Leapfrog Triejoin;Proceedings of the 7th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA);2024-06-09

3. Rapidash: Efficient Detection of Constraint Violations;Proceedings of the VLDB Endowment;2024-04

4. The Ring: Worst-case Optimal Joins in Graph Databases using (Almost) No Extra Space;ACM Transactions on Database Systems;2024-03-23

5. Parallel Acyclic Joins: Optimal Algorithms and Cyclicity Separation;Journal of the ACM;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3