Reducing Startup Time in Co-Designed Virtual Machines

Author:

Hu Shiliang1,Smith James E.1

Affiliation:

1. University of Wisconsin

Abstract

A Co-Designed Virtual Machine allows designers to implement a processor via a combination of hardware and software. Dynamic binary translation converts code written for a conventional (legacy) ISA into optimized code for an underlying implementation-specific ISA. Because translation is done dynamically, an important consideration in such systems is the startup time for performing the initial translations. Beginning with a previously proposed co-designed VM that implements the x86 ISA, we study runtime binary translation overhead effects. The co-designed x86 virtual machine is based on an adaptive translation system that uses a basic block translator for initial emulation and a superblock translator for hotspot optimization. We analyze and model VM startup performance via simulation. We observe that non-hotspot emulation via basic block translation is the major part of the startup overhead. To reduce startup translation overhead, we follow the co-designed hardware / software philosophy and propose hardware assists to dramatically accelerate basic block translations. By combining hardware assists with balanced translation strategies, the co-designed translation system reduces runtime overhead significantly and demonstrates very competitive startup performance when compared with conventional processors running a set of Windows application benchmarks.

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RHAS: robust hybrid auto-scaling for web applications in cloud computing;Cluster Computing;2020-07-20

2. Hybrid-DBT: Hardware/Software Dynamic Binary Translation Targeting VLIW;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2019-10

3. Warm-Up Simulation Methodology for HW/SW Co-Designed Processors;Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization;2014-02-15

4. DDGacc;ACM SIGPLAN Notices;2012-09-05

5. An approach to minimizing the interpretation overhead in Dynamic Binary Translation;The Journal of Supercomputing;2011-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3