Ensemble-level Power Management for Dense Blade Servers

Author:

Ranganathan Parthasarathy1,Leech Phil1,Irwin David2,Chase Jeffrey2

Affiliation:

1. Hewlett Packard

2. Duke University

Abstract

One of the key challenges for high-density servers (e.g., blades) is the increased costs in addressing the power and heat density associated with compaction. Prior approaches have mainly focused on reducing the heat generated at the level of an individual server. In contrast, this work proposes power efficiencies at a larger scale by leveraging statistical properties of concurrent resource usage across a collection of systems ("ensemble"). Specifically, we discuss an implementation of this approach at the blade enclosure level to monitor and manage the power across the individual blades in a chassis. Our approach requires low-cost hardware modifications and relatively simple software support. We evaluate our architecture through both prototyping and simulation. For workloads representing 132 servers from nine different enterprise deployments, we show significant power budget reductions at performances comparable to conventional systems.

Publisher

Association for Computing Machinery (ACM)

Reference22 articles.

1. 1 . Advanced Configuration and Power Interface Specification. Intel Corporation Microsoft Corporation and Toshiba Corporation. http://www.teleport.com/acpi December 1996. 1. Advanced Configuration and Power Interface Specification. Intel Corporation Microsoft Corporation and Toshiba Corporation. http://www.teleport.com/acpi December 1996.

2. 2 . M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup Web Site. http://www.hpl.hp.com/techreports/1999/HPL-1999-35R1.html February 1999. 10.1109/65.844498 2. M. Arlitt and T. Jin. Workload Characterization of the 1998 World Cup Web Site. http://www.hpl.hp.com/techreports/1999/HPL-1999-35R1.html February 1999. 10.1109/65.844498

3. Web search for a planet: the google cluster architecture

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PowerMorph: QoS-Aware Server Power Reshaping for Data Center Regulation Service;ACM Transactions on Architecture and Code Optimization;2022-08-22

2. Performance Optimization of Machine Learning Inference under Latency and Server Power Constraints;2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS);2022-07

3. Total Cost of Ownership Perspective of Cloud vs Edge Deployments of IoT Applications;Computing at the EDGE;2022

4. Energy efficiency in cloud computing data center: a survey on hardware technologies;Cluster Computing;2021-10-21

5. State-of-the-Art Power Management Techniques;Proceedings of Second Doctoral Symposium on Computational Intelligence;2021-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3