Approximating Spanners and Directed Steiner Forest

Author:

Chlamtáč Eden1,Dinitz Michael2,Kortsarz Guy3,Laekhanukit Bundit4ORCID

Affiliation:

1. Ben Gurion University, Be’er-Sheva, Israel

2. Johns Hopkins University, USA

3. Rutgers University-Camden, USA

4. Shanghai University of Finance 8 Economics, China

Abstract

It was recently found that there are very close connections between the existence of additive spanners (subgraphs where all distances are preserved up to an additive stretch), distance preservers (subgraphs in which demand pairs have their distance preserved exactly), and pairwise spanners (subgraphs in which demand pairs have their distance preserved up to a multiplicative or additive stretch) [Abboud-Bodwin SODA’16 8 J.ACM’17, Bodwin-Williams SODA’16]. We study these problems from an optimization point of view, where rather than studying the existence of extremal instances, we are given an instance and are asked to find the sparsest possible spanner/preserver. We give an O ( n 3/5 + ε )-approximation for distance preservers and pairwise spanners (for arbitrary constant ε > 0). This is the first nontrivial upper bound for either problem, both of which are known to be as hard to approximate as Label Cover. We also prove Label Cover hardness for approximating additive spanners, even for the cases of additive 1 stretch (where one might expect a polylogarithmic approximation, since the related multiplicative 2-spanner problem admits an O (log n )-approximation) and additive polylogarithmic stretch (where the related multiplicative spanner problem has an O (1)-approximation). Interestingly, the techniques we use in our approximation algorithm extend beyond distance-based problem to pure connectivity network design problems. In particular, our techniques allow us to give an O ( n 3/5 + ε )-approximation for the Directed Steiner Forest problem (for arbitrary constant ε > 0) when all edges have uniform costs, improving the previous best O ( n 2/3 + ε )-approximation due to Berman et al. [ICALP’11] (which holds for general edge costs).

Funder

National Science Foundation

Israel Science Foundation

Israeli Centers for Research Excellence

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ETH-Tight Algorithm for Bidirected Steiner Connectivity;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3