A Hardware-Efficient Architecture for Accurate Real-Time Disparity Map Estimation

Author:

Ttofis Christos1,Kyrkou Christos1,Theocharides Theocharis1

Affiliation:

1. University of Cyprus, Nicosia, Cyprus

Abstract

Emerging embedded vision systems utilize disparity estimation as a means to perceive depth information to intelligently interact with their host environment and take appropriate actions. Such systems demand high processing performance and accurate depth perception while requiring low energy consumption, especially when dealing with mobile and embedded applications, such as robotics, navigation, and security. The majority of real-time dedicated hardware implementations of disparity estimation systems have adopted local algorithms relying on simple cost aggregation strategies with fixed and rectangular correlation windows. However, such algorithms generally suffer from significant ambiguity along depth borders and areas with low texture. To this end, this article presents the hardware architecture of a disparity estimation system that enables good performance in both accuracy and speed. The architecture implements an adaptive support weight stereo correspondence algorithm that integrates image segmentation information in an attempt to increase the robustness of the matching process. The article also presents hardware-oriented algorithmic modifications/optimization techniques that make the algorithm hardware-friendly and suitable for efficient dedicated hardware implementation. A comparison to the literature asserts that an FPGA implementation of the proposed architecture is among the fastest implementations in terms of million disparity estimations per second (MDE/s), and with an overall accuracy of 90.21%, it presents an effective processing speed/disparity map accuracy trade-off.

Funder

Republic of Cyprus through the Research Promotion Foundation and the EUREKA Organization under the Eurostars Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3