Affiliation:
1. University of Bristol, United Kingdom
Abstract
General expressions are derived for the amplitude equation valid at a Turing bifurcation of a system of reaction-diffusion equations in one spatial dimension, with an arbitrary number of components. The normal form is computed up to fifth order, which enables the detection and analysis of codimension-two points where the criticality of the bifurcation changes. The expressions are implemented within a Python package, in which the user needs to specify only expressions for the reaction kinetics and the values of diffusion constants. The code is augmented with a Mathematica routine to compute curves of Turing bifurcations in a parameter plane and automatically detect codimension-two points. The software is illustrated with examples that show the versatility of the method including a case with cross-diffusion, a higher-order scalar equation and a four-component system.
Publisher
Association for Computing Machinery (ACM)
Subject
Applied Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献