FiberFlex: Real-time FPGA-based Intelligent & Distributed Fiber Sensor System for Pedestrian Recognition

Author:

Li Yuqi1ORCID,Zhao Kehao1ORCID,Zhao Jieru1ORCID,Wang Qirui1ORCID,Zhong Shuda1ORCID,Lalam Nageswara2ORCID,Wright Ruishu2ORCID,Zhou Peipei3ORCID,Chen Kevin P.1ORCID

Affiliation:

1. University of Pittsburgh, USA

2. National Energy Technology Laboratory, USA

3. Brown University, USA

Abstract

In recent years, security monitoring of public places and critical infrastructure has heavily relied on the widespread use of cameras, raising concerns about personal privacy violations. To balance the need for effective security monitoring with the protection of personal privacy, we explore the potential of optical fiber sensors for this application. This paper proposes FiberFlex, an intelligent and distributed fiber sensor system. Ultizing FPGA high-level synthesis (HLS) acceleration, FiberFlex offers real-time pedestrian detection by co-designing the entire pipeline of optical signal acquisition, processing, and recognition networks based on the principles of optical fiber sensing. As a promising alternative to traditional camera-based monitoring systems, FiberFlex achieves pedestrian detection by analyzing the vibration patterns caused by pedestrian footsteps, enabling security monitoring while preserving individual privacy. FiberFlex comprises three modules: First , fiber-optic sensing system: A fiber-optic distributed acoustic sensing (DAS) system is built and used to measure the ground vibration waves generated by people walking. Second , algorithms: We first collect the training data by measuring the ground vibration waves, label the data, and use the data to train the neural network models to perform pedestrian recognition. Third , hardware accelerators: We use HLS tools to design hardware modules on FPGA for data collection and pre-processing, and integrate them with the downstream neural network accelerators to perform in-line real-time pedestrian detection. The final detection results are sent back from FPGA to the host CPU. We implement our system FiberFlex with the in-house built DAS system and AMD/Xilinx Kintex7 FPGA KC705 board and verify the whole system using the real-world collected data. We conduct recognition tests on 5 test subjects of varying ages, heights, and weights in a fixed sensing area. Each subject experienced 20 real-time recognition tests using their daily walking habits, and the subjects were given adequate rest between tests. After 100 tests on five test subjects, the overall real-time recognition accuracy exceeded \(88.0\%\) . The whole system uses 55 watts of power, 33 watts in the optical DAS system, and 22 watts in the FPGA. Relying on its end-to-end interdisciplinary design, FiberFlex seamlessly combines fiber-optic sensors with FPGA accelerators to enable low-power real-time security monitoring without compromising privacy, making it a valuable addition to the existing security monitoring network. According to FiberFlex, more valuable research can be conducted in the future, such as fall monitoring for the elderly, migration of identification networks between different application scenarios, and improvement of anti-interference performance in more complex environments. In future perception networks, where the “eyes” are not feasible, let's use fiber optic touch instead.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3