Scalable and Efficient Web Search Result Diversification

Author:

Naini Kaweh Djafari1,Altingovde Ismail Sengor2,Siberski Wolf3

Affiliation:

1. L3S Research Center, Hannover, Germany

2. Middle East Technical University, Ankara, Turkey

3. Bundesdruckerei GmbH

Abstract

It has been shown that top- k retrieval quality can be considerably improved by taking not only relevance but also diversity into account. However, currently proposed diversification approaches have not put much attention on practical usability in large-scale settings, such as modern web search systems. In this work, we make two contributions toward this goal. First, we propose a combination of optimizations and heuristics for an implicit diversification algorithm based on the desirable facility placement principle, and present two algorithms that achieve linear complexity without compromising the retrieval effectiveness. Instead of an exhaustive comparison of documents, these algorithms first perform a clustering phase and then exploit its outcome to compose the diverse result set. Second, we describe and analyze two variants for distributed diversification in a computing cluster, for large-scale IR where the document collection is too large to keep in one node. Our contribution in this direction is pioneering, as there exists no earlier work in the literature that investigates the effectiveness and efficiency of diversification on a distributed setup. Extensive evaluations on a standard TREC framework demonstrate a competitive retrieval quality of the proposed optimizations to the baseline algorithm while reducing the processing time by more than 80% and up to 97%, and shed light on the efficiency and effectiveness tradeoffs of diversification when applied on top of a distributed architecture.

Funder

European Commission Seventh Framework Program

German Federal Ministry of Education

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3