Routability-driven Power/Ground Network Optimization Based on Machine Learning

Author:

Huang Ping-Wei1ORCID,Chang Yao-Wen2ORCID

Affiliation:

1. Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

2. Department of Electrical Engineering and Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

Abstract

The dynamic IR drop of a power/ground (PG) network is a critical problem in modern circuit designs. Excessive IR drop slows down circuit performance and causes potential functional failures. Most industrial practices tend to over-design the PG network for the dynamic IR drop constraints, reducing routing resources and incurring routing congestion. Existing machine learning-based approaches target only dynamic IR drop prediction without considering the routability affected by the P/G network. This article develops a machine learning-based method to solve the dynamic IR drop and routing resources tradeoffs. Our model can predict the two targets accurately by adopting a multi-task learning scheme, achieving a 0.99 high correlation coefficient. We show that our trained model is generalizable by testing different placement results. Our algorithm also achieves significant speedups of up to 29× compared to the time-consuming dynamic IR drop simulation by a leading commercial tool. Experimental results show that our algorithm can save about 13% routing resources without worsening the dynamic IR drop peak value.

Funder

AnaGlobe, MediaTek, Synopsys, TSMC, MOST of Taiwan

NTU

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference31 articles.

1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dandelion Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from https://www.tensorflow.org/.

2. ANSYS. 2022. RedHawk User Manual. Retrieved from https://www.ansys.com/products/semiconductors/ansys-redhawk-sc.

3. Practical Routability-Driven Design Flow for Multilayer Power Networks Using Aluminum-Pad Layer

4. Generating Routing-Driven Power Distribution Networks With Machine-Learning Technique

5. XGBoost

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. WCPNet: Jointly Predicting Wirelength, Congestion and Power for FPGA Using Multi-Task Learning;ACM Transactions on Design Automation of Electronic Systems;2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3