Ordered and quantum treemaps

Author:

Bederson Benjamin B.1,Shneiderman Ben1,Wattenberg Martin2

Affiliation:

1. University of Maryland, College Park, MD

2. IBM Research, Cambridge, MA

Abstract

Treemaps, a space-filling method for visualizing large hierarchical data sets, are receiving increasing attention. Several algorithms have been previously proposed to create more useful displays by controlling the aspect ratios of the rectangles that make up a treemap. While these algorithms do improve visibility of small items in a single layout, they introduce instability over time in the display of dynamically changing data, fail to preserve order of the underlying data, and create layouts that are difficult to visually search. In addition, continuous treemap algorithms are not suitable for displaying fixed-sized objects within them, such as images.This paper introduces a new "strip" treemap algorithm which addresses these shortcomings, and analyzes other "pivot" algorithms we recently developed showing the trade-offs between them. These ordered treemap algorithms ensure that items near each other in the given order will be near each other in the treemap layout. Using experimental evidence from Monte Carlo trials and from actual stock market data, we show that, compared to other layout algorithms, ordered treemaps are more stable, while maintaining relatively favorable aspect ratios of the constituent rectangles. A user study with 20 participants clarifies the human performance benefits of the new algorithms. Finally, we present quantum treemap algorithms, which modify the layout of the continuous treemap algorithms to generate rectangles that are integral multiples of an input object size. The quantum treemap algorithm has been applied to PhotoMesa, an application that supports browsing of large numbers of images.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference16 articles.

1. Space-filling software visualization;Baker M. J.;J. Vis. Lang. Comput.,1995

2. Edgar G. A. Ewing J. H. and Gehring F. W. 1995. Measure Topology and Fractal Geometry. Springer Verlag. Edgar G. A. Ewing J. H. and Gehring F. W. 1995. Measure Topology and Fractal Geometry. Springer Verlag.

Cited by 244 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3