Smoothing an overlay grid to minimize linear distortion in texture mapping

Author:

Sheffer Alla1,de Sturler Eric2

Affiliation:

1. Technion, Haifa, Israel

2. University of Illinois at Urbana Champaign, IL

Abstract

Texture is an essential component of computer generated models. For a texture mapping procedure to be effective it has to generate continuous textures and cause only small mapping distortion. The Angle Based Flattening (ABF) parameterization method is guaranteed to provide a continuous (no foldovers) mapping. It also minimizes the angular distortion of the parameterization, including locating the optimal planar domain boundary. However, since it concentrates on minimizing the angular distortion of the mapping, it can introduce relatively large linear distortion.In this paper we introduce a new procedure for reducing length distortion of an existing parameterization and apply it to ABF results. The linear distortion reduction is added as a second step in a texture mapping computation. The new method is based on computing a mapping from the plane to itself which has length distortion very similar to that of the ABF parameterization. By applying the inverse mapping to the result of the initial parameterization, we obtain a new parameterization with low length distortion. We notice that the procedure for computing the inverse mapping can be applied to any other (convenient) mapping from the three-dimensional surface to the plane in order to improve it.The mapping in the plane is computed by applying weighted Laplacian smoothing to a Cartesian grid covering the planar domain of the initial mapping. Both the mapping and its inverse are provably continuous. Since angle preserving (conformal) mappings, such as ABF, locally preserve distances as well, the planar mapping has small local deformation. As a result, the inverse mapping does not significantly increase the angular distortion.The combined texture mapping procedure provides a mapping with low distance and angular distortion, which is guaranteed to be continuous.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3