Make Full Use of Priors

Author:

He Xin1,Liu Qiong1,Yang You1ORCID

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

Abstract

Multi-view video plus depth (MVD) is the promising and widely adopted data representation for future 3D visual applications and interactive media. However, compression distortions on depth videos impede the development of such applications, and filters are crucially needed for the quality enhancement at the terminal side. Cross-view priors can intuitively be involved in filter design, but these priors are also distorted in compression and thus the contribution of them can hardly be considered in previous research. In this article, we propose a cross-view optimized filter for depth map quality enhancement by making full use of inner- and cross-view priors. We dedicate to evaluate the contributions of distorted cross-view priors in filtering the current view of depth, and then both inner- and cross-view priors can be involved in the filter design. Thus, distortions of cross-view priors are not barriers again as before. For the purpose of that, mutual information guided cross-view consistency is designed to evaluate the contributions of cross-view priors from compression distortions of MVD. After that, under the framework of global optimization, both inner- and cross-view priors are modeled and taken to minimize the designed energy function where both data accuracy and spatial smoothness are modeled. The experimental results show that the proposed model outperforms state-of-the-art methods, where 3.289 dB and 0.0407 average gains on peak signal-to-noise ratio and structural similarity metrics can be obtained, respectively. For the subjective evaluations, object details and structure information are recovered in the compressed depth video. We also verify our method via several practical applications, including virtual view synthesis for smooth interaction and point cloud for 3D modeling for accuracy evaluation. In these verifications, the ringing and malposition artifacts on object contours are properly handled for interactive video, and discontinuous object surfaces are restored for 3D modeling. All of these results suggest that compression distortions in MVD can be properly filtered by the proposed model, which provides a promising solution for future bandwidth constrained 3D and interactive visual applications.

Funder

National Natural Science Fundation of China

National Key R&D Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference48 articles.

1. Feature Boosting Network For 3D Pose Estimation

2. Guillaume Rochette Chris Russell and Richard Bowden. 2019. Weakly-supervised 3D pose estimation from a single image using multi-view consistency. arXiv:1909.06119 Guillaume Rochette Chris Russell and Richard Bowden. 2019. Weakly-supervised 3D pose estimation from a single image using multi-view consistency. arXiv:1909.06119

3. Asymmetric Coding of Multi-View Video Plus Depth Based 3-D Video for View Rendering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Bidirection Recurrent Network for Efficient Video Deblurring with the Fused Temporal Merge Module;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-06-07

2. Research progress of six degree of freedom(6DoF) video technology;Journal of Image and Graphics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3