Inferring Person-to-person Proximity Using WiFi Signals

Author:

Sapiezynski Piotr1,Stopczynski Arkadiusz2,Wind David Kofoed1,Leskovec Jure3,Lehmann Sune4

Affiliation:

1. Technical University of Denmark

2. Technical University of Denmark, MIT Media Lab

3. Stanford University

4. Technical University of Denmark, Niels Bohr Institute

Abstract

Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. While mobility is an important aspect of human behavior, it is also crucial to study physical interactions among individuals. Sensing proximity that enables social interactions on a large scale is a technical challenge and many commonly used approaches—including RFID badges or Bluetooth scanning—offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth Bluetooth proximity collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals as a tool for social sensing and show how collections of WiFi data pose a potential threat to privacy.

Funder

Danish Council for Independent Research

Københavns Universitet

Villum Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3