Engagement or Knowledge Retention: Exploring Trade-offs in Promoting Discussion at News Websites

Author:

McInnis Brian James1,Ajmani Leah2,Dow Steven P.1

Affiliation:

1. University of California, San Diego, La Jolla, CA, USA

2. University of Minnesota, Twin Cities, MN, USA

Abstract

How does presenting comments in a news article affect the ways that readers engage with and retain information about news? This paper presents results from a controlled experiment investigating effects related to different strategies for promoting discussion at news websites (N=336 participants). The strategies include highlighting specific comments about a data visualization, providing prompts with the comments, and annotating prompts on the visualization. By comparison to a simple list of comments (baseline), our analysis found that annotations contributed to higher levels of participant engagement in the discussion, yet lower levels of knowledge retention related to the article. These findings raise new considerations about whether and how to integrate discussion content into news and points toward future content moderation systems that assist in representing and eliciting discussion at news websites.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference98 articles.

1. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems

2. Crowdsourcing in Open Journalism

3. Lucas Anastasiou and Anna De Liddo . 2021. Making Sense of Online Discussions: Can Automated Reports help? (5 2021 ), 1--7. https://doi.org/10.1145/3411763.3451815 10.1145/3411763.3451815 Lucas Anastasiou and Anna De Liddo. 2021. Making Sense of Online Discussions: Can Automated Reports help? (5 2021), 1--7. https://doi.org/10.1145/3411763.3451815

4. The “Nasty Effect:” Online Incivility and Risk Perceptions of Emerging Technologies

5. Article Recall, Credibility Lower with Grammar Errors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3