Vector Coprocessor Virtualization for Simultaneous Multithreading

Author:

Lu Yaojie1,Rooholamin Seyedamin1,Ziavras Sotirios G.1

Affiliation:

1. New Jersey Institute of Technology, Dept. of Electrical and Computer Engineering

Abstract

Vector coprocessors (VPs), commonly being assigned exclusively to a single thread/core, are not often performance and energy efficient due to mismatches with the vector needs of individual applications. We present in this article an easy-to-implement VP virtualization technique that, when applied, enables a multithreaded VP to simultaneously execute multiple threads of similar or arbitrary vector lengths to achieve improved aggregate utilization. With a vector register file (VRF) virtualization technique invented to dynamically allocate physical vector registers to threads, our VP virtualization approach improves programmer productivity by providing at runtime a distinct physical register name space to each competing thread, thus eliminating the need to solve register-name conflicts statically. We applied our virtualization technique to a multithreaded VP and prototyped an FPGA-based multicore processor system that supports VP sharing as well as power gating for better energy efficiency. Under the dynamic creation of disparate threads, our benchmarking results show impressive VP speedups of up to 333% and total energy savings of up to 37% with proper thread scheduling and power gating compared to a similar-sized system that allows VP access to just one thread at a time.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Occamy: Elastically Sharing a SIMD Co-processor across Multiple CPU Cores;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2023-03-25

2. Ara: A 1-GHz+ Scalable and Energy-Efficient RISC-V Vector Processor With Multiprecision Floating-Point Support in 22-nm FD-SOI;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2020-02

3. Floating-point accelerator for biometric recognition on FPGA embedded systems;Journal of Parallel and Distributed Computing;2018-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3