A five-year study of file-system metadata

Author:

Agrawal Nitin1,Bolosky William J.2,Douceur John R.2,Lorch Jacob R.2

Affiliation:

1. University of Wisconsin, Madison, WI

2. Microsoft Research, Redmond, WA

Abstract

For five years, we collected annual snapshots of file-system metadata from over 60,000 Windows PC file systems in a large corporation. In this article, we use these snapshots to study temporal changes in file size, file age, file-type frequency, directory size, namespace structure, file-system population, storage capacity and consumption, and degree of file modification. We present a generative model that explains the namespace structure and the distribution of directory sizes. We find significant temporal trends relating to the popularity of certain file types, the origin of file content, the way the namespace is used, and the degree of variation among file systems, as well as more pedestrian changes in size and capacities. We give examples of consequent lessons for designers of file systems and related software.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An empirical study of challenges in machine learning asset management;Empirical Software Engineering;2024-06-15

2. Exploiting Flat Namespace to Improve File System Metadata Performance on Ultra-Fast, Byte-Addressable NVMs;ACM Transactions on Storage;2024-01-30

3. DHIFS: A Dynamic and Hybrid Index Method with Low Memory Overhead and Efficient File Access;2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2023-12-17

4. Low-Latency and Scalable Full-path Indexing Metadata Service for Distributed File Systems;2023 IEEE 41st International Conference on Computer Design (ICCD);2023-11-06

5. The State of the Art of Metadata Managements in Large-Scale Distributed File Systems — Scalability, Performance and Availability;IEEE Transactions on Parallel and Distributed Systems;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3