Hardware Performance Counter-Based Malware Identification and Detection with Adaptive Compressive Sensing

Author:

Wang Xueyang1,Chai Sek2,Isnardi Michael2,Lim Sehoon2,Karri Ramesh1

Affiliation:

1. New York University, Brooklyn, NY

2. SRI International, Princeton, NJ

Abstract

Hardware Performance Counter-based (HPC) runtime checking is an effective way to identify malicious behaviors of malware and detect malicious modifications to a legitimate program’s control flow. To reduce the overhead in the monitored system which has limited storage and computing resources, we present a “sample-locally-analyze-remotely” technique. The sampled HPC data are sent to a remote server for further analysis. To minimize the I/O bandwidth required for transmission, the fine-grained HPC profiles are compressed into much smaller vectors with Compressive Sensing. The experimental results demonstrate an 80% I/O bandwidth reduction after applying Compressive Sensing, without compromising the detection and identification capabilities.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference37 articles.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RD-FAXID: Ransomware Detection with FPGA-Accelerated XGBoost;ACM Transactions on Reconfigurable Technology and Systems;2024-08-12

2. CarePlus: A general framework for hardware performance counter based malware detection under system resource competition;Computers & Security;2024-08

3. Ransomware Classification Using Hardware Performance Counters on a Non-Virtualized System;IEEE Access;2024

4. Leveraging Hardware Performance Counters for Efficient Classification of Binary Packers;2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom);2023-11-01

5. A Hybrid Solution for Constrained Devices to Detect Microarchitectural Attacks;2023 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3