Speeding up symbolic reasoning for relational queries

Author:

Wang Chenglong1,Cheung Alvin1,Bodik Rastislav1

Affiliation:

1. University of Washington, USA

Abstract

The ability to reason about relational queries plays an important role across many types of database applications, such as test data generation, query equivalence checking, and computer-assisted query authoring. Unfortunately, symbolic reasoning about relational queries can be challenging because relational tables are multisets (bags) of tuples, and the underlying languages, such as SQL, can introduce complex computation among tuples. We propose a space refinement algorithm that soundly reduces the space of tables such applications need to consider. The refinement procedure, independent of the specific dataset application, uses the abstract semantics of the query language to exploit the provenance of tuples in the query output to prune the search space. We implemented the refinement algorithm and evaluated it on SQL using three reasoning tasks: bounded query equivalence checking, test generation for applications that manipulate relational data, and concolic testing of database applications. Using real world benchmarks, we show that our refinement algorithm significantly speeds up (up to 100×) the SQL solver when reasoning about a large class of challenging SQL queries, such as those with aggregations.

Funder

Defense Advanced Research Projects Agency

National Science Foundation

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VeriEQL: Bounded Equivalence Verification for Complex SQL Queries with Integrity Constraints;Proceedings of the ACM on Programming Languages;2024-04-29

2. Predicate Pushdown for Data Science Pipelines;Proceedings of the ACM on Management of Data;2023-06-13

3. Verifying Data Constraint Equivalence in FinTech Systems;2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE);2023-05

4. Active Learning for Inference and Regeneration of Applications that Access Databases;ACM Transactions on Programming Languages and Systems;2021-02

5. Provenance-guided synthesis of Datalog programs;Proceedings of the ACM on Programming Languages;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3