Affiliation:
1. School of Electrical and Computer Engineering, Cornell University, USA
Abstract
Modern FPGA synthesis tools typically apply a predetermined sequence of logic optimizations on the input logic network before carrying out technology mapping. While the “known recipes” of logic transformations often lead to improved mapping results, there remains a nontrivial gap between the quality metrics driving the pre-mapping logic optimizations and those targeted by the actual technology mapping. Needless to mention, such miscorrelations would eventually result in suboptimal quality of results.
In this article, we propose PIMap, which couples logic transformations and technology mapping under an iterative improvement framework for LUT-based FPGAs. In each iteration, PIMap randomly proposes a transformation on the given logic network from an ensemble of candidate optimizations; it then invokes technology mapping and makes use of the mapping result to determine the likelihood of accepting the proposed transformation. By adjusting the optimization objective and incorporating required time constraints during the iterative process, PIMap can flexibly optimize for different objectives including area minimization, delay optimization, and delay-constrained area reduction. To mitigate the runtime overhead, we further introduce parallelization techniques to decompose a large design into multiple smaller sub-netlists that can be optimized simultaneously. Experimental results show that PIMap achieves promising quality improvement over a set of commonly used benchmarks, including improving the majority of the best-known area and delay records for the EPFL benchmark suite.
Funder
National Science Foundation
Defense Advanced Research Projects Agency
Publisher
Association for Computing Machinery (ACM)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献