Revealing CNN Architectures via Side-Channel Analysis in Dataflow-based Inference Accelerators

Author:

Weerasena Hansika1ORCID,Mishra Prabhat1ORCID

Affiliation:

1. University of Florida, Gainesville, United States

Abstract

Convolutional Neural Networks (CNNs) are widely used in various domains, including image recognition, medical diagnosis and autonomous driving. Recent advances in dataflow-based CNN accelerators have enabled CNN inference in resource-constrained edge devices. These dataflow accelerators utilize inherent data reuse of convolution layers to process CNN models efficiently. Concealing the architecture of CNN models is critical for privacy and security. This article evaluates memory-based side-channel information to recover CNN architectures from dataflow-based CNN inference accelerators. The proposed attack exploits spatial and temporal data reuse of the dataflow mapping on CNN accelerators and architectural hints to recover the structure of CNN models. Experimental results demonstrate that our proposed side-channel attack can recover the structures of popular CNN models, namely, Lenet, Alexnet, VGGnet16, and YOLOv2.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Abien Fred Agarap. 2018. Deep learning using rectified linear units (ReLU). Retrieved from https://arXiv:1803.08375

2. Architecting a Secure Wireless Interconnect for Multichip Communication: An ML Approach

3. Lejla Batina Shivam Bhasin Dirmanto Jap and Stjepan Picek. 2019. CSI NN: Reverse engineering of neural network architectures through electromagnetic side channel. 28th USENIX Security Symposium (USENIX Security’19). 515–532.

4. TRESOR-HUNT

5. Anirban Chakraborty Manaar Alam Vishal Dey Anupam Chattopadhyay and Debdeep Mukhopadhyay. 2018. Adversarial attacks and defences: A survey. Retrieved from https://arXiv:1810.00069

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3