Verifying distributed programs via canonical sequentialization

Author:

Bakst Alexander1,Gleissenthall Klaus v.1,Kıcı Rami Gökhan1,Jhala Ranjit1

Affiliation:

1. University of California at San Diego, USA

Abstract

We introduce canonical sequentialization, a new approach to verifying unbounded, asynchronous, message-passing programs at compile-time. Our approach builds upon the following observation: due the combinatorial explosion in complexity, programmers do not reason about their systems by case-splitting over all the possible execution orders. Instead, correct programs tend to be well-structured so that the programmer can reason about a small number of representative executions, which we call the program’s canonical sequentialization. We have implemented our approach in a tool called Brisk that synthesizes canonical sequentializations for programs written in Haskell, and evaluated it on a wide variety of distributed systems including benchmarks from the literature and implementations of MapReduce, two-phase commit, and a version of the Disco distributed file-system. We show that unlike model checking, which gets prohibitively slow with just 10 processes Brisk verifies the unbounded versions of the benchmarks in tens of milliseconds, yielding the first concurrency verification tool that is fast enough to be integrated into a design-implement-check cycle.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collective Contracts for Message-Passing Parallel Programs;Lecture Notes in Computer Science;2024

2. Diamont: dynamic monitoring of uncertainty for distributed asynchronous programs;International Journal on Software Tools for Technology Transfer;2023-08

3. Survey on Parameterized Verification with Threshold Automata and the Byzantine Model Checker;Logical Methods in Computer Science;2023-01-18

4. A Sequentialization Procedure for Fault-Tolerant Protocols;Lecture Notes in Computer Science;2023

5. Verifying the safety properties of distributed systems via mergeable parallelism;Journal of Systems Architecture;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3