UAVs vs. Pirates

Author:

Zhang Ruiwen1,Holvoet Tom2,Song Bifeng1,Pei Yang1

Affiliation:

1. Northwestern Polytechnical University, Xi'an, Shaanxi, China

2. Katholieke Universiteit Leuven, Celestijnenlaan, Heverlee, Belgium

Abstract

For the rising hazard of pirate attacks, unmanned aerial vehicle (UAV) swarm monitoring is a promising countermeasure. Previous monitoring methods have deficiencies in either adaptivity to dynamic events or simple but effective path coordination mechanisms, and they are inapplicable to the large-area, low-target-density, and long-duration persistent counter-piracy monitoring. This article proposes a self-organized UAV swarm counter-piracy monitoring method. Based on the pheromone map, this method is characterized by (1) a reservation mechanism for anticipatory path coordination and (2) a ship-adaptive mechanism for adapting to merchant ship distributions. A heuristic depth-first branch and bound search algorithm is designed for solving individual path planning. Simulation experiments are conducted to study the optimal number of plan steps and adaptivity scaling factor for different numbers of UAVs. Results show that merely decreasing revisit intervals cannot effectively reduce pirate attacks. Without the ship-adaptive mechanism, the proposed method reduces up to 87.2%, 43.2%, and 5.5% of revisit intervals compared to the Lèvy Walk method, the sweep method, and the baseline self-organized method, respectively, but cannot reduce pirate attacks; while with the ship-adaptive mechanism, the proposed method can reduce pirate attacks by up to 6.7% compared to the best of the baseline methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DRESS-ML;Proceedings of the 2022 ACM/IEEE 44th International Conference on Software Engineering: Software Engineering in Society;2022-05-21

2. DRESS-ML: A Domain-specific Language for Modelling Exceptional Scenarios and Self-adaptive Behaviours for Drone-based Applications;2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3