Robust Recommender Systems with Rating Flip Noise

Author:

Ye Shanshan1,Lu Jie1

Affiliation:

1. Australian Artificial Intelligence Institute, University of Technology Sydney, Ultimo, Australia

Abstract

Recommender systems have become important tools in the daily life of human beings since they are powerful to address information overload, and discover relevant and useful items for users. The success of recommender systems largely relies on the interaction history between users and items, which is expected to accurately reflect the preferences of users on items. However, the expectation is easily broken in practice, due to the corruptions made in the interaction history, resulting in unreliable and untrusted recommender systems. Previous works either ignore this issue (assume that the interaction history is precise) or are limited to handling additive noise. Motivated by this, in this paper, we study rating flip noise which is widely existed in the interaction history of recommender systems and combat it by modelling the noise generation process. Specifically, the rating flip noise allows a rating to be flipped to any other ratings within the given rating set, which reflects various real-world situations of rating corruption, e.g. , a user may randomly click a rating from the rating set and then submit it. The noise generation process is modelled by the noise transition matrix that denotes the probabilities of a clean rating flip into a noisy rating. A statistically consistent algorithm is afterwards applied with the estimated transition matrix to learn a robust recommender system against rating flip noise. Comprehensive experiments on multiple benchmarks confirm the superiority of our method.

Publisher

Association for Computing Machinery (ACM)

Reference72 articles.

1. Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering 17, 6(2005), 734–749.

2. Taleb Alashkar Songyao Jiang Shuyang Wang and Yun Fu. 2017. Examples-rules guided deep neural network for makeup recommendation. In AAAI Vol.  31.

3. Vito Walter Anelli Yashar Deldjoo Tommaso Di Noia Daniele Malitesta Vincenzo Paparella and Claudio Pomo. 2023. Auditing Consumer-and Producer-Fairness in Graph Collaborative Filtering. In ECIR Vol.  23.

4. Understanding and improving early stopping for learning with noisy labels;Bai Yingbin;Advances in Neural Information Processing Systems,2021

5. A review on deep learning for recommender systems: challenges and remedies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3