A Comprehensive Survey on Poisoning Attacks and Countermeasures in Machine Learning

Author:

Tian Zhiyi1ORCID,Cui Lei2ORCID,Liang Jie1ORCID,Yu Shui1ORCID

Affiliation:

1. University of Technology Sydney, Ultimo, NSW, Australia

2. Shandong Computer Science Center (National Supercomputer Center in Jinan), Jinan City, Shandong Province, China

Abstract

The prosperity of machine learning has been accompanied by increasing attacks on the training process. Among them, poisoning attacks have become an emerging threat during model training. Poisoning attacks have profound impacts on the target models, e.g., making them unable to converge or manipulating their prediction results. Moreover, the rapid development of recent distributed learning frameworks, especially federated learning, has further stimulated the development of poisoning attacks. Defending against poisoning attacks is challenging and urgent. However, the systematic review from a unified perspective remains blank. This survey provides an in-depth and up-to-date overview of poisoning attacks and corresponding countermeasures in both centralized and federated learning. We firstly categorize attack methods based on their goals. Secondly, we offer detailed analysis of the differences and connections among the attack techniques. Furthermore, we present countermeasures in different learning framework and highlight their advantages and disadvantages. Finally, we discuss the reasons for the feasibility of poisoning attacks and address the potential research directions from attacks and defenses perspectives, separately.

Funder

Australia ARC

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference161 articles.

1. Identifying Encrypted Malware Traffic with Contextual Flow Data

2. BaFFLe: Backdoor Detection via Feedback-based Federated Learning

3. Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How to backdoor federated learning. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020 (Proceedings of Machine Learning Research), Vol. 108. PMLR, 2938–2948.

4. The security of machine learning

5. Can machine learning be secure?

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3