Extractive Summarization of Telugu Text Using Modified Text Rank and Maximum Marginal Relevance

Author:

Babu G. L. Anand1ORCID,Badugu Srinivasu2ORCID

Affiliation:

1. University College of University, India

2. Stanley College of Engineering and Technology for Women, India

Abstract

With the rapid growth of digital content, there is a need for an automatic text summarizer to provide short text from a long text document. Many research works have been presented for extractive text summarization (ETS). This article mainly focuses on the graph-based ETS approach for multiple Telugu text documents. A modified Text-Rank algorithm is employed with the noun and verb count of each sentence in the text as the initial score of each node. To get the optimal features, a novel feature selection algorithm called improved Flamingo Search Algorithm is proposed in this article. Though graph-based ETS is an important approach, the generated summaries are redundant. To reduce the redundancy in the generated summary, maximum marginal relevance is combined with the modified Text-Rank. Different word-embedding techniques such as Fast-Text, Word2vec, TF-IDF, and one-hot encoding are utilized to experiment with the proposed approach. The performance of the proposed text summarization approach is evaluated with BLEU and ROUGE in terms of F-measure, precision, and recall.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3