DAML

Author:

Zhao Ping1,Sun Jiaxin1,Zhang Guanglin1

Affiliation:

1. Donghua University, Shanghai, China

Abstract

Data aggregation based on machine learning (ML), in mobile edge computing, allows participants to send ephemeral parameter updates of local ML on their private data instead of the exact data to the untrusted aggregator. However, it still enables the untrusted aggregator to reconstruct participants’ private data, although parameter updates contain significantly less information than the private data. Existing work either incurs extremely high overhead or ignores malicious participants dropping out. The latest research deals with the dropouts with desirable cost, but it is vulnerable to malformed message attacks. To this end, we focus on the data aggregation based on ML in a practical setting where malicious participants may send malformed parameter updates to perturb the total parameter updates learned by the aggregator. Moreover, malicious participants may drop out and collude with other participants or the untrusted aggregator. In such a scenario, we propose a scheme named DAML , which to the best of our knowledge is the first attempt toward verifying participants’ submissions in data aggregation based on ML. The main idea is to validate participants’ submissions via SSVP, a novel secret-shared verification protocol, and then aggregate participants’ parameter updates using SDA, a secure data aggregation protocol. Simulation results demonstrate that DAML can protect participants’ data privacy with preferable overhead.

Funder

Fundamental Research Funds for the Central Universities

Shanghai Sailing Program

National Natural Science Foundation of China

Shanghai Rising-Star Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Traffic Forecasting Model based on Efficient Spatiotemporal Graph Convolutional Network;Proceedings of the 2023 12th International Conference on Informatics, Environment, Energy and Applications;2023-02-17

2. Computational Task Offloading Scheme based on Deep Learning for Financial Big Data;2021 16th International Conference on Intelligent Systems and Knowledge Engineering (ISKE);2021-11-26

3. Garbage In, Garbage Out: Poisoning Attacks Disguised With Plausible Mobility in Data Aggregation;IEEE Transactions on Network Science and Engineering;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3