A Survey of Hardware Improvements to Secure Program Execution

Author:

Zhao Lianying1ORCID,Shuang He2ORCID,Xu Shengjie2ORCID,Huang Wei3ORCID,Cui Rongzhen2ORCID,Bettadpur Pushkar2ORCID,Lie David3ORCID

Affiliation:

1. School of Computer Science, Carleton University, Ottawa, Canada

2. University of Toronto, Toronto, Canada

3. Electrical and Computer Engineering, University of Toronto, Toronto, Canada

Abstract

Hardware has been constantly augmented for security considerations since the advent of computers. There is also a common perception among computer users that hardware does a relatively better job on security assurance compared to software. Yet, the community has long lacked a comprehensive study to answer questions such as how hardware security support contributes to security, what kind of improvements have been introduced to improve such support and what its advantages/disadvantages are. By generalizing various security goals, we taxonomize hardware security features and their security properties that can aid in securing program execution, considered as three aspects, i.e., state correctness, runtime protection and input/output protection. Based on this taxonomy, the survey systematically examines 1) the roles: how hardware is applied to achieve security; and 2) the problems: how reported attacks have exploited certain defects in hardware. We see that hardware’s unique advantages and problems co-exist and it highly depends on the desired security purpose as to which type to use. Among the survey findings are also that code as part of hardware (aka. firmware) should be treated differently to ensure security by design; and how research proposals have driven the advancement of commodity hardware features.

Publisher

Association for Computing Machinery (ACM)

Reference186 articles.

1. Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow Integrity. In Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS ’05).

2. Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow Attestation for Embedded Systems Software. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16).

3. Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and John Wiegert. 2006. Intel Virtualization Technology for Directed I/O. Intel technology journal 10, 3 (2006), 179–192.

4. Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, and Nicola Tuveri. 2018. Port Contention for Fun and Profit.IACR Cryptology ePrint Archive 2018 (2018), 1060.

5. Alibaba Group. 2022. ECS Bare Metal Instance. https://www.alibabacloud.com/product/ebm [Accessed May 8, 2024].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3