On Fine-Grained Geolocalisation of Tweets
Author:
Affiliation:
1. University of Glasgow, Glasgow, United Kingdom
2. University of Strathclyde, Glasgow, United Kingdom
Funder
European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3121050.3121104
Reference9 articles.
1. @Phillies Tweeting from Philly? Predicting Twitter User Locations with Spatial Word Usage
2. Zhiyuan Cheng James Caverlee and Kyumin Lee. 2010. You are where you tweet: a content-based approach to geo-locating twitter users Proceedings of the 19th ACM international conference on Information and knowledge management. ACM 759--768. 10.1145/1871437.1871535 Zhiyuan Cheng James Caverlee and Kyumin Lee. 2010. You are where you tweet: a content-based approach to geo-locating twitter users Proceedings of the 19th ACM international conference on Information and knowledge management. ACM 759--768. 10.1145/1871437.1871535
3. Jacob Eisenstein Brendan O'Connor Noah A Smith and Eric P Xing 2010. A latent variable model for geographic lexical variation Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics 1277--1287. Jacob Eisenstein Brendan O'Connor Noah A Smith and Eric P Xing 2010. A latent variable model for geographic lexical variation Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics 1277--1287.
4. David Flatow Mor Naaman Ke Eddie Xie Yana Volkovich and Yaron Kanza 2015. On the accuracy of hyper-local geotagging of social media content Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM 127--136. 10.1145/2684822.2685296 David Flatow Mor Naaman Ke Eddie Xie Yana Volkovich and Yaron Kanza 2015. On the accuracy of hyper-local geotagging of social media content Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM 127--136. 10.1145/2684822.2685296
5. Mark Graham Scott A. Hale and Devin Gaffney. 2013. Where in the World are You? Geolocation and Language Identification in Twitter. CoRR Vol. abs/1308.0683 (2013). http://arxiv.org/abs/1308.0683 Mark Graham Scott A. Hale and Devin Gaffney. 2013. Where in the World are You? Geolocation and Language Identification in Twitter. CoRR Vol. abs/1308.0683 (2013). http://arxiv.org/abs/1308.0683
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Wind energy: Influencing the dynamics of the public opinion formation through the retweet network;Technological Forecasting and Social Change;2023-09
2. Fine-grained location prediction of non geo-tagged tweets;Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery;2022-11
3. A Location Recall Strategy for Improving Efficiency of User-Generated Short Text Geolocalization;IEEE Transactions on Computational Social Systems;2021
4. An overview of microblog user geolocation methods;Information Processing & Management;2020-11
5. Comparison of different machine learning techniques on location extraction by utilizing geo-tagged tweets: A case study;Advanced Engineering Informatics;2020-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3