Effect of Wordline/Bitline Scaling on the Performance, Energy Consumption, and Reliability of Cross-Point Memory Array

Author:

Liang Jiale1,Yeh Stanley1,Wong S. Simon1,Wong H.-S. Philip1

Affiliation:

1. Stanford University

Abstract

The impact of wordline/bitline metal wire scaling on the write/read performance, energy consumption, speed, and reliability of the cross-point memory array is quantitatively studied for technology nodes down to single-digit nm. The impending resistivity increase in the Cu wires is found to cause significant decrease of both write and read window margins at the regime when electron surface scattering and grain boundary scattering are substantial. At deeply-scaled device dimensions, the wire energy dissipation and wire latency become comparable to or even exceed the intrinsic values of memory cells. The large current density flowing through the wordlines/bitlines raises additional reliability concerns for the cross-point memory array. All these issues are exacerbated at smaller memory resistance values and larger memory array sizes. They thereby impose strict constraints on the memory device design and preclude the realization of large-scale cross-point memory array with minimum feature sizes beyond the 10 nm node. A rethink in the design methodology of cross-point memory to incorporate and mitigate the scaling effects of wordline/bitline is necessary. Possible solutions include the use of memory wires with better conductivity and scalability, memory arrays with smaller partition sizes, and memory elements with larger resistance values and resistance ratios.

Funder

E3S Center

Stanford University

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference40 articles.

1. A Novel Resistance Memory with High Scalability and Nanosecond Switching

2. Non-volatile memory technologies: emerging concepts and new materials

3. High performance ultra-low energy RRAM with good retention and endurance;Cheng C. H.;Proceedings of the International Electron Devices Meeting. IEEE,2010

4. The conductivity of thin metallic films according to the electron theory of metals

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3