Learning Semantic Representations from Directed Social Links to Tag Microblog Users at Scale

Author:

Zhao Wayne Xin1,Hou Yupeng1,Chen Junhua1,Zhu Jonathan J. H.2,Yin Eddy Jing3,Su Hanting4,Wen Ji-Rong4

Affiliation:

1. Renmin University of China, Beijing, China

2. City University of Hong Kong, Hong Kong, China

3. Microsoft, China

4. Renmin University of China, China

Abstract

This article presents a network embedding approach to automatically generate tags for microblog users. Instead of using text data, we aim to annotate microblog users with meaningful tags by leveraging rich social link data. To utilize directed social links, we use two kinds of node representations for modeling user interest in terms of their followers and followees, respectively. To alleviate the sparsity problem, we propose a novel method based on two transformation functions for capturing implicit interest similarity. Different from previous works on capturing high-order proximity, our model is able to directly characterize the effect of the context user on the proximity of node pairs. Another novelty of our model is that the importance scores of users learned from the classic PageRank algorithm are utilized to set the link weights. By using such weights, our model is more capable of disentangling the interest similarity evidence of a link. We jointly consider the above factors when designing the final objective function. We construct a very large evaluation set consisting of 2.6M users, 0.5M tags, and 0.8B following links. To our knowledge, it is the largest reported dataset for microblog user tagging in the literature. Extensive experiments on this dataset demonstrate the effectiveness of the proposed approach. We implement this approach with several optimization techniques, which makes our model easy to scale to very large social networks. Ubiquitous social links provide important data resources to understand user interests. Our work provides an effective and efficient solution to annotate user interests solely using the link data, which has important practical value in industry. To illustrate the use of our models, we implement a demonstration system for visualizing, navigating, and searching microblog users.

Funder

Research Funds of Renmin University of China

National Natural Science Foundation of China

Beijing Outstanding Young Scientist Program

Fundamental Research Funds for the Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspherical Variational Co-embedding for Attributed Networks;ACM Transactions on Information Systems;2022-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3