1. Amine Mohamed Aboussalah, Minjae Kwon, Raj G. Patel, Cheng Chi, and Chi-Guhn Lee. 2023. Recursive time series data augmentation. In 11th International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=5lgD4vU-l24s
2. Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. 2021. Generative time-series modeling with Fourier flows. In International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=PpshD0AXfA
3. Ahmed Alaa, Boris Van Breugel, Evgeny S. Saveliev, and Mihaela van der Schaar. 2022. How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models. In Proceedings of the 39th International Conference on Machine Learning (Proceedings of Machine Learning Research), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.), Vol. 162. PMLR, 290–306. Retrieved from https://proceedings.mlr.press/v162/alaa22a.html
4. Samuel A. Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E. Tillman, Prashant Reddy, and Manuela Veloso. 2020. Generating synthetic data in finance: Opportunities, challenges and pitfalls. In 1st ACM International Conference on AI in Finance. 1–8.