Jointly Predicting Future Content in Multiple Social Media Sites Based on Multi-task Learning

Author:

Zhang Peng1ORCID,Liu Baoxi1ORCID,Lu Tun1ORCID,Ding Xianghua1ORCID,Gu Hansu2ORCID,Gu Ning1ORCID

Affiliation:

1. School of Computer Science, Fudan University, Shanghai, China

2. Seattle, Bellevue, WA, USA

Abstract

User-generated contents (UGC) in social media are the direct expression of users’ interests, preferences, and opinions. User behavior prediction based on UGC has increasingly been investigated in recent years. Compared to learning a person’s behavioral patterns in each social media site separately, jointly predicting user behavior in multiple social media sites and complementing each other (cross-site user behavior prediction) can be more accurate. However, cross-site user behavior prediction based on UGC is a challenging task due to the difficulty of cross-site data sampling, the complexity of UGC modeling, and uncertainty of knowledge sharing among different sites. For these problems, we propose a Cross-Site Multi-Task (CSMT) learning method to jointly predict user behavior in multiple social media sites. CSMT mainly derives from the hierarchical attention network and multi-task learning. Using this method, the UGC in each social media site can obtain fine-grained representations in terms of words, topics, posts, hashtags, and time slices as well as the relevances among them, and prediction tasks in different social media sites can be jointly implemented and complement each other. By utilizing two cross-site datasets sampled from Weibo, Douban, Facebook, and Twitter, we validate our method’s superiority on several classification metrics compared with existing related methods.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference66 articles.

1. Cross-system user modeling and personalization on the Social Web

2. Sergey Bartunov, Anton Korshunov, Seung-Taek Park, Wonho Ryu, and Hyungdong Lee. 2012. Joint link-attribute user identity resolution in online social networks. In Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Workshop on Social Network Mining and Analysis.

3. LIBSVM

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Innovative Practice and Theoretical Exploration of Visual Communication Design for Future Media;Applied Mathematics and Nonlinear Sciences;2024-01-01

2. Examining User Heterogeneity in Digital Experiments;ACM Transactions on Information Systems;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3