Robust Drift Characterization from Event Streams of Business Processes

Author:

Ostovar Alireza1,Leemans Sander J. J.2,Rosa Marcello La1ORCID

Affiliation:

1. The University of Melbourne, Parkville, Australia

2. Queensland University of Technology, Brisbane, Australia

Abstract

Process workers may vary the normal execution of a business process to adjust to changes in their operational environment, e.g., changes in workload, season, or regulations. Changes may be simple, such as skipping an individual activity, or complex, such as replacing an entire procedure with another. Over time, these changes may negatively affect process performance; hence, it is important to identify and understand them early on. As such, a number of techniques have been developed to detect process drifts , i.e., statistically significant changes in process behavior, from process event logs (offline) or event streams (online). However, detecting a drift without characterizing it, i.e., without providing explanations on its nature, is not enough to help analysts understand and rectify root causes for process performance issues. Existing approaches for drift characterization are limited to simple changes that affect individual activities. This article contributes an efficient, accurate, and noise-tolerant automated method for characterizing complex drifts affecting entire process fragments. The method, which works both offline and online, relies on two cornerstone techniques, one to automatically discover process trees from event streams (logs) and the other to transform process trees using a minimum number of change operations. The operations identified are then translated into natural language statements to explain the change behind a drift. The method has been extensively evaluated on artificial and real-life datasets, and against a state-of-the-art baseline method. The results from one of the real-life datasets have also been validated with a process stakeholder.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3