Packet classification using tuple space search

Author:

Srinivasan V.1,Suri S.1,Varghese G.1

Affiliation:

1. Department of Computer Science, Washington University in St. Louis

Abstract

Routers must perform packet classification at high speeds to efficiently implement functions such as firewalls and QoS routing. Packet classification requires matching each packet against a database of filters (or rules), and forwarding the packet according to the highest priority filter. Existing filter schemes with fast lookup time do not scale to large filter databases. Other more scalable schemes work for 2-dimensional filters, but their lookup times degrade quickly with each additional dimension. While there exist good hardware solutions, our new schemes are geared towards software implementation.We introduce a generic packet classification algorithm, called Tuple Space Search (TSS) . Because real databases typically use only a small number of distinct field lengths, by mapping filters to tuples even a simple linear search of the tuple space can provide significant speedup over naive linear search over the filters. Each tuple is maintained as a hash table that can be searched in one memory access. We then introduce techniques for further refining the search of the tuple space, and demonstrate their effectiveness on some firewall databases. For example, a real database of 278 filters had a tuple space of 41 which our algorithm prunes to 11 tuples. Even as we increased the filter database size from 1K to 100K (using a random two-dimensional filter generation model), the number of tuples grew from 53 to only 186, and the pruned tuples only grew from 1 to 4. Our Pruned Tuple Space search is also the only scheme known to us that allows fast updates and fast search times. We also show a lower bound on the general tuple space search problem, and describe an optimal algorithm, called Rectangle Search , for two-dimensional filters.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LearningTuple: A packet classification scheme with high classification and high update;Computer Networks;2024-12

2. High-Performance Flow Classification of Big Data Using Hybrid CPU-GPU Clusters of Cloud Environments;Tsinghua Science and Technology;2024-08

3. MultiSplit: An Efficient Algorithm for Packet Classification with Equivalent Priority;Electronics;2024-07-27

4. On Packet Classification with Multidimensional Range Trees;ICC 2024 - IEEE International Conference on Communications;2024-06-09

5. TuplePick: A High Stability Packet Classification based on Neural Network;2024 IEEE 25th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM);2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3