Type Information Utilized Event Detection via Multi-Channel GNNs in Electrical Power Systems

Author:

Li Qian1ORCID,Li Jianxin1ORCID,Wang Lihong2ORCID,Ji Cheng1ORCID,Hei Yiming3ORCID,Sheng Jiawei4ORCID,Sun Qingyun1ORCID,Xue Shan5ORCID,Xie Pengtao6ORCID

Affiliation:

1. School of Computer Science and Engineering, Beihang University, China

2. National Computer Network Emergency Response Technical Team/Coordination Center of China, China

3. School of Cyber Science and Technology, Beihang University, China

4. Institute of Information Engineering, Chinese Academy of Sciences, China

5. School of Computing, Macquarie University, Australia

6. Department of Electrical and Computer Engineering, UC San Diego, United States

Abstract

Event detection in power systems aims to identify triggers and event types, which helps relevant personnel respond to emergencies promptly and facilitates the optimization of power supply strategies. However, the limited length of short electrical record texts causes severe information sparsity, and numerous domain-specific terminologies of power systems makes it difficult to transfer knowledge from language models pre-trained on general-domain texts. Traditional event detection approaches primarily focus on the general domain and ignore these two problems in the power system domain. To address the above issues, we propose a Multi-Channel graph neural network utilizing Type information for Event Detection in power systems, named MC-TED , leveraging a semantic channel and a topological channel to enrich information interaction from short texts. Concretely, the semantic channel refines textual representations with semantic similarity, building the semantic information interaction among potential event-related words. The topological channel generates a relation-type-aware graph modeling word dependencies, and a word-type-aware graph integrating part-of-speech tags. To further reduce errors worsened by professional terminologies in type analysis, a type learning mechanism is designed for updating the representations of both the word type and relation type in the topological channel. In this way, the information sparsity and professional term occurrence problems can be alleviated by enabling interaction between topological and semantic information. Furthermore, to address the lack of labeled data in power systems, we built a Chinese event detection dataset based on electrical Power Event texts, named PoE . In experiments, our model achieves compelling results not only on the PoE dataset, but on general-domain event detection datasets including ACE 2005 and MAVEN.

Funder

NSFC

Academic Excellence Foundation of Beihang University for PhD Students

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3