Fingerprinting-based Minimal Perfect Hashing Revisited

Author:

Beling Piotr1ORCID

Affiliation:

1. Faculty of Mathematics and Computer Science, University of Łódź , Poland

Abstract

In this paper we study a fingerprint-based minimal perfect hash function ( FMPH for short). While FMPH is not as space-efficient as some other minimal perfect hash functions (for example RecSplit, CHD, or PTHash), it has a number of practical advantages that make it worthy of consideration. FMPH is simple and quite fast to evaluate. Its construction requires very little auxiliary memory, takes a short time and, in addition, can be parallelized or carried out without holding keys in memory. In this paper, we propose an effective method (called FMPHGO ) that reduces the size of FMPH, as well as a number of implementation improvements. In addition, we experimentally study FMPHGO performance and find the best values for its parameters. Our benchmarks show that with our method and an efficient structure to support the rank queries on a bit vector, the FMPH size can be reduced to about 2.1 bits/key, which is close to the size achieved by state-of-the-art methods and noticeably larger only compared to RecSplit. FMPHGO preserves most of the FMPH advantages mentioned above, but significantly reduces its construction speed. However, FMPHGO’s construction speed is still competitive with methods of similar space efficiency (like CHD or PTHash), and seems to be good enough for practical applications.

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3