A Survey of Asynchronous Programming Using Coroutines in the Internet of Things and Embedded Systems

Author:

Belson Bruce1ORCID,Holdsworth Jason1,Xiang Wei1,Philippa Bronson1

Affiliation:

1. James Cook University, Smithfield, Cairns, QLD, Australia

Abstract

Many Internet of Things and embedded projects are event driven, and therefore require asynchronous and concurrent programming. Current proposals for C++20 suggest that coroutines will have native language support. It is timely to survey the current use of coroutines in embedded systems development. This article investigates existing research which uses or describes coroutines on resource-constrained platforms. The existing research is analysed with regard to: software platform, hardware platform, and capacity; use cases and intended benefits; and the application programming interface design used for coroutines. A systematic mapping study was performed, to select studies published between 2007 and 2018 which contained original research into the application of coroutines on resource-constrained platforms. An initial set of 566 candidate papers, collated from on-line databases, were reduced to only 35 after filters were applied, revealing the following taxonomy. The C 8 C++ programming languages were used by 22 studies out of 35. As regards hardware, 16 studies used 8- or 16-bit processors while 13 used 32-bit processors. The four most common use cases were concurrency (17 papers), network communication (15), sensor readings (9), and data flow (7). The leading intended benefits were code style and simplicity (12 papers), scheduling (9), and efficiency (8). A wide variety of techniques have been used to implement coroutines, including native macros, additional tool chain steps, new language features, and non-portable assembly language. We conclude that there is widespread demand for coroutines on resource-constrained devices. Our findings suggest that there is significant demand for a formalised, stable, well-supported implementation of coroutines in C++, designed with consideration of the special needs of resource-constrained devices, and further that such an implementation would bring benefits specific to such devices.

Funder

Australian Government Research Training Program (RTP) Scholarship

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Synergistic Elixir-EDA-MQTT Framework for Advanced Smart Transportation Systems;Future Internet;2024-02-28

2. Programming Approaches for Large-Scale IoT System Development: State of the Art;Internet of Things;2024

3. Typing Composable Coroutines;2023 12th International Conference on Computer Technologies and Development (TechDev);2023-10-14

4. 基于SoftSSD的快速固态硬盘固件原型开发;Frontiers of Information Technology & Electronic Engineering;2023-05

5. EAST Experimental Data Gateway Based on RESTful and Microservice Architecture;2023 4th International Conference on Computer Engineering and Application (ICCEA);2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3