Near-duplicate keyframe retrieval by semi-supervised learning and nonrigid image matching

Author:

Zhu Jianke1,Hoi Steven C. H.2,Lyu Michael R.3,Yan Shuicheng4

Affiliation:

1. Zhejiang University

2. Nanyang Technological University, Singapore

3. The Chinese University of Hong Kong, China

4. National University of Singapore, Singapore

Abstract

Near-duplicate keyframe (NDK) retrieval techniques are critical to many real-world multimedia applications. Over the last few years, we have witnessed a surge of attention on studying near-duplicate image/keyframe retrieval in the multimedia community. To facilitate an effective approach to NDK retrieval on large-scale data, we suggest an effective Multi-Level Ranking (MLR) scheme that effectively retrieves NDKs in a coarse-to-fine manner. One key stage of the MLR ranking scheme is how to learn an effective ranking function with extremely small training examples in a near-duplicate detection task. To attack this challenge, we employ a semi-supervised learning method, semi-supervised support vector machines, which is able to significantly improve the retrieval performance by exploiting unlabeled data. Another key stage of the MLR scheme is to perform a fine matching among a subset of keyframe candidates retrieved from the previous coarse ranking stage. In contrast to previous approaches based on either simple heuristics or rigid matching models, we propose a novel Nonrigid Image Matching (NIM) approach to tackle near-duplicate keyframe retrieval from real-world video corpora in order to conduct an effective fine matching. Compared with the conventional methods, the proposed NIM approach can recover explicit mapping between two near-duplicate images with a few deformation parameters and find out the correct correspondences from noisy data simultaneously. To evaluate the effectiveness of our proposed approach, we performed extensive experiments on two benchmark testbeds extracted from the TRECVID2003 and TRECVID2004 corpora. The promising results indicate that our proposed method is more effective than other state-of-the-art approaches for near-duplicate keyframe retrieval.

Funder

Ministry of Education - Singapore

ACM Multimedia

National Research Foundation-Prime Minister's office, Republic of Singapore

Research Grants Council, University Grants Committee, Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OR2Net: Online Re-weighting Relation Network for kinship verification;Expert Systems with Applications;2024-12

2. Facial Kinship Verification using Computational Approaches;2023 IEEE International Conference on Contemporary Computing and Communications (InC4);2023-04-21

3. An Efficient Hardware Architecture for Block Based Image Processing Algorithms;Lecture Notes in Computer Science;2016

4. Semi-supervised feature selection via hierarchical regression for web image classification;Multimedia Systems;2014-05-27

5. Practical Application of Near Duplicate Detection for Image Database;Communications in Computer and Information Science;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3