Bridging Software-Hardware for CXL Memory Disaggregation in Billion-Scale Nearest Neighbor Search

Author:

Jang Junhyeok1ORCID,Choi Hanjin2ORCID,Bae Hanyeoreum1ORCID,Lee Seungjun1ORCID,Kwon Miryeong2ORCID,Jung Myoungsoo2ORCID

Affiliation:

1. KAIST, Daejeon, Korea

2. KAIST and Panmnesia, Inc., Daejeon, Korea

Abstract

We propose CXL-ANNS , a software-hardware collaborative approach to enable scalable approximate nearest neighbor search (ANNS) services. To this end, we first disaggregate DRAM from the host via compute express link (CXL) and place all essential datasets into its memory pool. While this CXL memory pool allows ANNS to handle billion-point graphs without an accuracy loss, we observe that the search performance significantly degrades because of CXL’s far-memory-like characteristics. To address this, CXL-ANNS considers the node-level relationship and caches the neighbors in local memory, which are expected to visit most frequently. For the uncached nodes, CXL-ANNS prefetches a set of nodes most likely to visit soon by understanding the graph traversing behaviors of ANNS. CXL-ANNS is also aware of the architectural structures of the CXL interconnect network and lets different hardware components collaborate with each other for the search. Furthermore, it relaxes the execution dependency of neighbor search tasks and allows ANNS to utilize all hardware in the CXL network in parallel. Our evaluation shows that CXL-ANNS exhibits 93.3% lower query latency than state-of-the-art ANNS platforms that we tested. CXL-ANNS also outperforms an oracle ANNS system that has unlimited local DRAM capacity by 68.0%, in terms of latency.

Publisher

Association for Computing Machinery (ACM)

Reference74 articles.

1. Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. A scalable processing-in-memory accelerator for parallel graph processing. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA’15).

2. Michael J. Anderson Benny Chen Stephen Chen Summer Deng Jordan Fix Michael Gschwind Aravind Kalaiah Changkyu Kim Jaewon Lee Jason Liang Haixin Liu Yinghai Lu Jack Montgomery Arun Moorthy Nadathur Satish Sam Naghshineh Avinash Nayak Jongsoo Park Chris Petersen Martin Schatz Narayanan Sundaram Bangsheng Tang Peter Tang Amy Yang Jiecao Yu Hector Yuen Ying Zhang Aravind Anbudurai Vandana Balan Harsha Bojja Joe Boyd Matthew Breitbach Claudio Caldato Anna Calvo Garret Catron Sneh Chandwani Panos Christeas Brad Cottel Brian Coutinho Arun Dalli Abhishek Dhanotia Oniel Duncan Roman Dzhabarov Simon Elmir Chunli Fu Wenyin Fu Michael Fulthorp Adi Gangidi Nick Gibson Sean Gordon Beatriz Padilla Hernandez Daniel Ho Yu-Cheng Huang Olof Johansson Shishir Juluri Shobhit Kanaujia Manali Kesarkar Jonathan Killinger Ben Kim Rohan Kulkarni Meghan Lele Huayu Li Huamin Li Yueming Li Cynthia Liu Jerry Liu Bert Maher Chandra Mallipedi Seema Mangla Kiran Kumar Matam Jubin Mehta Shobhit Mehta Christopher Mitchell Bharath Muthiah Nitin Nagarkatte Ashwin Narasimha Bernard Nguyen Thiara Ortiz Soumya Padmanabha Deng Pan Ashwin Poojary Ye (Charlotte) Qi Olivier Raginel Dwarak Rajagopal Tristan Rice Craig Ross Nadav Rotem Scott Russ Kushal Shah Baohua Shan Hao Shen Pavan Shetty Krish Skandakumaran Kutta Srinivasan Roshan Sumbaly Michael Tauberg Mor Tzur Sidharth Verma Hao Wang Man Wang Ben Wei Alex Xia Chenyu Xu Martin Yang Kai Zhang Ruoxi Zhang Ming Zhao Whitney Zhao Rui Zhu Ajit Mathew Lin Qiao Misha Smelyanskiy Bill Jia and Vijay Rao. 2021. First-generation inference accelerator deployment at Facebook. arXiv:2107.04140. Retrieved from https://arxiv.org/abs/2107.04140

3. Sunil Arya and David M. Mount. 1993. Approximate nearest neighbor queries in fixed dimensions. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’93).

4. An optimal algorithm for approximate nearest neighbor searching fixed dimensions;Arya Sunil;Journal of the ACM,1998

5. Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2017. ANN-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. In Proceedings of the International Conference on Similarity Search and Applications. Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3