GRASP: Scalable Graph Alignment by Spectral Corresponding Functions

Author:

Hermanns Judith1ORCID,Skitsas Konstantinos1ORCID,Tsitsulin Anton2ORCID,Munkhoeva Marina3ORCID,Kyster Alexander1ORCID,Nielsen Simon1ORCID,Bronstein Alexander M.4ORCID,Mottin Davide1ORCID,Karras Panagiotis1ORCID

Affiliation:

1. Aarhus University, Aarhus, Denmark

2. Google Research, New York, NY

3. Max Planck Institute for Intelligent Systems, Tübingen, Germany

4. Technion, Haifa, Israel

Abstract

What is the best way to match the nodes of two graphs? This graph alignment problem generalizes graph isomorphism and arises in applications from social network analysis to bioinformatics. Some solutions assume that auxiliary information on known matches or node or edge attributes is available, or utilize arbitrary graph features. Such methods fare poorly in the pure form of the problem, in which only graph structures are given. Other proposals translate the problem to one of aligning node embeddings, yet, by doing so, provide only a single-scale view of the graph. In this article, we transfer the shape-analysis concept of functional maps from the continuous to the discrete case, and treat the graph alignment problem as a special case of the problem of finding a mapping between functions on graphs. We present GRASP, a method that first establishes a correspondence between functions derived from Laplacian matrix eigenvectors, which capture multiscale structural characteristics, and then exploits this correspondence to align nodes. We enhance the basic form of GRASP by altering two of its components, namely the embedding method and the assignment procedure it employs, leveraging its modular, hence adaptable design. Our experimental study, featuring noise levels higher than anything used in previous studies, shows that the enhanced form of GRASP outperforms scalable state-of-the-art methods for graph alignment across noise levels and graph types, and performs competitively with respect to the best non-scalable ones. We include in our study another modular graph alignment algorithm, CONE, which is also adaptable thanks to its modular nature, and show it can manage graphs with skewed power-law degree distributions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference71 articles.

1. SPINAL: scalable protein interaction network alignment

2. Message-passing algorithms for sparse network alignment;Bayati Mohsen;Transactions on Knowledge Discovery from Data,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3