Evaluating the Predictive Performance of Positive- Unlabelled Classifiers

Author:

Saunders Jack D.1,Freitas Alex A.1

Affiliation:

1. University of Kent, Canterbury, United Kingdom

Abstract

Positive-Unlabelled (PU) learning is a growing area of machine learning that aims to learn classifiers from data consisting of labelled positive and unlabelled instances. Whilst much work has been done proposing methods for PU learning, little has been written on the subject of evaluating these methods. Many popular standard classification metrics cannot be precisely calculated due to the absence of fully labelled data, so alternative approaches must be taken. This short commentary paper critically reviews the main PU learning evaluation approaches and the choice of predictive accuracy measures in 51 articles proposing PU classifiers and provides practical recommendations for improvements in this area.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference58 articles.

1. Learning from positive and unlabeled data: a survey

2. Elkan , C. and Noto , K ., 2008. Learning classifiers from only positive and unlabeled data . In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 213 -- 220 . Elkan, C. and Noto, K., 2008. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 213--220.

3. Disease genes prediction by HMM based PU-learning using gene expression profiles

4. C-PUGP: A cluster-based positive unlabeled learning method for disease gene prediction and prioritization

5. Positive-unlabeled learning for disease gene identification

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3